Stuff

    Subscribe to our newsletter

    What's Hot
    complex

    How complex is your life? Computer scientists found a way to measure it

    August 14, 2022
    metaverse main

    The metaverse isn’t here yet, but it already has a long history

    August 14, 2022
    Taiwan semiconductor

    What is a semiconductor? An electrical engineer explains

    August 13, 2022
    Facebook Twitter Instagram YouTube SoundCloud
    Trending
    • How complex is your life? Computer scientists found a way to measure it
    • The metaverse isn’t here yet, but it already has a long history
    • What is a semiconductor? An electrical engineer explains
    • Nearly 70% of Premier League footballers are abused on Twitter – we used an AI to sift through millions of tweets
    • Mobile RPG Avatar: Generations has launched early in South Africa
    • Yes, even the Beach Buggy is an EV now
    • Xiaomi’s new folding device has arrived. Meet the Mix Fold 2
    • Anker’s latest power bank can fast charge devices simultaneously
    Facebook Twitter Instagram YouTube
    StuffStuff
    • News
      • App News
      • Business News
      • Camera News
      • Gaming News
      • Headphone News
      • Industry News
      • Internet News
      • Laptops News
      • Motoring News
      • Other Tech News
      • Phone News
      • Tablet News
      • Technology News
      • TV News
      • Wearables News
    • Reviews
      • Camera Reviews
      • Car Reviews
      • Featured Reviews
      • Game Reviews
      • Headphone Reviews
      • Laptop Reviews
      • Other Tech Reviews
      • Phone Reviews
      • Tablet Reviews
      • Wearables Reviews
    • Columns
    • Stuff Guides
    • Podcasts & Videos
      • Videos
      • Stuffed
      • Stuffing Around
      • Tech Byte
      • T2S2
    • Win
    • Subscribe
      • Print
      • Digital
        • Google Play
        • iTunes
        • Download
        • Zinio
    • Stuff Shop
      • Shop Now
      • My Account
      • Downloads
    • Contact Us
      • Get In Touch
      • Advertise
    0 Shopping Cart
    Stuff
    Home » News » Other Tech News » A small telescope past Saturn could solve some mysteries of the universe better than giant telescopes near Earth
    News

    A small telescope past Saturn could solve some mysteries of the universe better than giant telescopes near Earth

    The ConversationBy The ConversationNovember 2, 2021No Comments6 Mins Read
    saturn telescope main
    Share
    Facebook Twitter LinkedIn Pinterest Email

    Dozens of space-based telescopes operate near Earth and provide incredible images of the universe. But imagine a telescope far away in the outer solar system, 10 or even 100 times farther from the Sun than Earth. The ability to look back at our solar system or peer into the darkness of the distant cosmos would make this a uniquely powerful scientific tool.

    I’m an astrophysicist who studies the formation of structure in the universe. Since the 1960s, scientists like me have been considering the important scientific questions we might be able to answer with a telescope placed in the outer solar system.

    So what would such a mission look like? And what science could be done?

    Where a telescope is located matters nearly as much as its power. In many cases, the farther from the Sun, the better. Beinahegut/WikimediaCommons

    A tiny telescope far from home

    The scientific strength of a telescope far from Earth would come primarily from its location, not its size. Plans for a telescope in the outer solar system would put it somewhere beyond the orbit of Saturn, roughly a billion or more miles from Earth.

    We’d need only send a very small telescope – with a lens roughly the size of a small plate – to achieve some truly unique astrophysical insights. Such a telescope could be built to weigh less than 20 pounds (9 kilograms) and could be piggybacked on virtually any mission to Saturn or beyond.

    Though small and simple compared with telescopes like Hubble or James Webb, such an instrument operating away from the bright light of the Sun could make measurements that are difficult or outright impossible from a vantage point near the Earth.

    The Sun has a disc of dust and gas surrounding it, much like the pinkish haze seen in this image and graphical representation of a nearby red dwarf star and its dust cloud. NASA/ESA/J. Debes

    Outside looking in

    Unfortunately for astronomers, getting a selfie of the solar system is a challenge. But being able to see the solar system from an outside vantage point would reveal a lot of information, in particular about the shape, distribution and composition of the dust cloud that surrounds the Sun.

    Imagine a street lamp on a foggy evening – by standing far away from the lamp, the swirling mists are visible in a way that someone standing under the streetlight could never see.

    For years astrophysicists have been able to take images of and study the dust discs in solar systems around other stars in the Milky Way. But these stars are very far away, and there are limits to what astronomers can learn about them. Using observations looking back toward the Sun, astronomers could compare the shape, features and composition of these distant dust clouds with detailed data on Earth’s own solar system. This data would fill gaps in knowledge about solar dust clouds and make it possible to understand the history of production, migration and destruction of dust in other solar systems that there is no hope of traveling to in person.

    The universe is full of galaxies – as seen in this image called the Hubble Ultra Deep Field – and measuring the cumulative light from these is hard to do from Earth. NASA/JPL

    Deep darkness of space

    Another benefit of placing a telescope far from the Sun is the lack of reflected light. The disc of dust in the plane of the planets reflects the Sun’s light back at Earth. This creates a haze that is between 100 and 1,000 times brighter than light from other galaxies and obscures views of the cosmos from near Earth. Sending a telescope outside of this dust cloud would place it in a much darker region of space making it easier to measure the light coming from outside the solar system.

    Once there, the telescope could measure the brightness of the ambient light of the universe over a wide range of wavelengths. This could provide insights into how matter condensed into the first stars and galaxies. It would also enable researchers to test models of the universe by comparing the predicted sum of light from all galaxies with a precise measurement. Discrepancies could point to problems with models of structure formation in the universe or perhaps to exotic new physics.

    From far enough away, it would be possible to use the Sun as a giant lens, similar to the gravitational lensing seen here as light from a distant blue galaxy is bent around a nearer orange galaxy seen in the center. ESA/Hubble/NASA

    Into the unknown

    Finally, increasing a telescope’s distance from the Sun would also allow astronomers to do unique science that takes advantage of an effect called gravitational lensing, in which a massive object distorts the path light takes as it moves past an object.

    One use of gravitational lensing is to search for and weigh rogue planets – planets that roam interstellar space after being ejected from their home solar systems. Since rogue planets don’t emit light on their own, astrophysicists can look for their effect on the light from background stars. To differentiate between the distance of the lensing object and its mass requires observations from a second location far from Earth.

    Gravitational lensing caused by a planet passing in front of a distant star will bend light from that star, and that can also be used to detect dark planets that have been ejected from solar systems. NASA Ames/JPL-Caltech/T. Pyle via WikimediaCommons

    In 2011, scientists used a camera on the EPOXI mission to the asteroid belt to discover and weigh a Neptune-sized object floating free among stars in the Milky Way galaxy. Only a few rogue planets have been found, but astronomers suspect they are very common and could hold clues to the formation of solar systems and prevalence of planets around stars.

    But perhaps the most interesting use for a telescope in the outer solar system would be the potential to use the gravitational field of the Sun itself as a giant lens. This kind of measurement may allow astrophysicists to actually map planets in other star systems. Perhaps one day we will be able to name continents on an Earth-like planet around a distant star.

    Coming soon?

    Since Pioneer 10 became the first human-made object to cross Jupiter’s orbit in 1973, there have been only a handful of astrophysical studies done from beyond the orbit of Earth. Missions to the outer solar system are rare, but many teams of scientists are doing studies to show how an extrasolar telescope project would work and what could be learned from one.

    Every 10 years or so, leaders in the astrophysics and astronomy fields gather to set goals for the following decade. That plan for the 2020s is scheduled to be released on Nov. 4, 2021. In it, I expect to see discussions about the next telescope that could revolutionize astronomy. Taking a telescope to the outer solar system, while ambitious, is well within the technological ability of NASA or other space agencies. I hope that one day soon a tiny telescope out on a lonely mission in dark reaches of the solar system will provide us incredible insights into the universe.

    • Michael Zemcov is Associate Professor of Physics, Rochester Institute of Technology
    • This article first appeared on The Conversation

    featured Saturn space telescope The Conversation
    Share. Facebook Twitter Pinterest LinkedIn WhatsApp Reddit Tumblr Email
    The Conversation

    Related Posts

    complex

    How complex is your life? Computer scientists found a way to measure it

    August 14, 2022
    metaverse main

    The metaverse isn’t here yet, but it already has a long history

    August 14, 2022
    Taiwan semiconductor

    What is a semiconductor? An electrical engineer explains

    August 13, 2022

    Comments are closed.

    In The Mag
    Stuff August-September 2022 Latest Issue

    In This Issue – The Women in Tech (August-September 2022) Issue

    By Brett VenterAugust 1, 20220

    August is a pretty special month. It’s the host of International Women’s Day and is…

    2021 Wish List
    wish list Stuff Wish List 2021

    Stuff Wish List: for the tech impaired

    By Duncan PikeDecember 22, 20210

    Are you from the time before being glued to a smartphone was considered normal? Here’s…

    Wishlist DIY Stuff tech

    Stuff Wish List: for the DIY Diehard

    December 21, 2021
    Wish List Gearhead

    Stuff Wish List: For the petrol-soaked gearhead

    December 20, 2021
    outsiders

    Stuff Wish List: for the Outsiders

    December 17, 2021

    Latest Video

    Sonos

    SONOS Roam SL unboxing by Toby Shapshak

    Mini Cooper

    The Mini Cooper SE Electric with Toby Shapshak

    MSI Crosshair 15 Rainbox Six Extraction Edition unboxing

    MSI Crosshair 15 Rainbox Six Extraction Edition unboxing

    Samsung Galaxy S22 Ultra Unboxing

    Samsung Galaxy S22 Ultra unboxing with Toby Shapshak

    Contact

    South Africa's Consumer Tech News Hub

    General: stuff@stuff.co.za
    Subscriptions: stuff@onthedot.co.za or 087 353 1291
    Editorial: 072 735 2614
    Sales: 083 375 2418

    Facebook Twitter Instagram YouTube SoundCloud

    Subscribe to Updates

    • Terms and Conditions
    • Privacy & POPI
    • My account
    © 2022 Stuff Group. Designed by Chronon.

    Type above and press Enter to search. Press Esc to cancel.